Adaptive Hybrid Function Projective Synchronization of Chaotic Systems with Time-Varying Parameters

نویسنده

  • Jinsheng Xing
چکیده

The adaptive hybrid function projective synchronization AHFPS of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, the parameters need not be known throughly if the time-varying parameters are bounded by the product of a known function of t and an unknown constant. In order to avoid the switching in the control signal, a modified robust adaptive synchronization approach with the leakage-like adaptation law is also proposed to guarantee the ultimately uni-formly boundedness UUB of synchronization errors. The schemes are successfully applied to the hybrid function projective synchronization between the Chen system and the Lorenz system and between hyperchaotic Chen system and generalized Lorenz system.Moreover, numerical simulation results are presented to verify the effectiveness of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive hybrid function projective synchronization of chaotic systems with fully unknown periodical time-varying parameters∗

Abstract. In this paper, an adaptive learning control approach is presented for the hybrid functional projective synchronization (HFPS) of different chaotic systems with fully unknown periodical time-varying parameters. Differential-difference hybrid parametric learning laws and an adaptive learning control law are constructed via the Lyapunov–Krasovskii functional stability theory, which make ...

متن کامل

Adaptive Hybrid Function Projective Synchronization of Chaotic Space-Tether System

In this paper, we have achieved adaptive hybrid function projective synchronization between two identical chaotic space-tether systems with uncertain time-varying parameters and with each system evolving from different initial conditions by applying adaptive control technique. Based on Lyapunov stability theory, adaptive control laws and parameter update laws for estimating the uncertain, timev...

متن کامل

Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance

This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...

متن کامل

Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters

This paper focuses on the adaptivemodified hybrid function projective synchronization with complex function transformationmatrix (CMHFPS) for different dimensional chaotic (hyperchaotic) systemswith complex variables and unknown complex parameters. The chaotic systems are considerably different from those in the existing closely related literature. Moreover, the transformation matrix in this ty...

متن کامل

Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication

In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014